
Building cascading deletes using pipelines

Introduction

Sometimes called “enforcing referential integrity”, cascading delete is a mechanism that prevents child
records from lingering after a parent record has been deleted. Many customers have set this up using
automations, and this guide explains how to achieve the same setup using pipelines.

As with most types of pipelines, the specific setup depends on the schema of the app. For example,
imagine you have a Projects table, which has a related Tasks child table, and the Tasks table has a
related Documents child table. The pipeline:

• Triggers when a record is deleted from the Projects table
• Queries the Tasks table and deletes any tasks that were related to the deleted project
• Queries the documents table and deletes any documents that were related to one of the

deleted tasks

Which child records should be deleted varies by business needs. For example, a healthcare company
may be able to delete certain types of data when they no longer need it, but may be required to keep all
invoices, even after the patient is no longer one of their clients.

CAUTION: Cascading deletes are powerful, and a simple mistake can require an app restore to fix. It’s
very important to test out a cascading delete pipeline before turning it on for a production app.
Consider testing it out using a sandbox first. Also, consider archiving less-relevant data before setting up
a cascading delete.

Automations vs pipelines

Setting up cascading deletes using automations gets complex if there is more than a single level of
relationships, requiring the deletes either be processed from the lowest level up – or that a separate
automation be built for each level of relationships in the chain of tables. Pipelines streamlines this
process, with a single pipeline able to delete records in the natural, top-down order across many levels
of relationships.

You can use pipelines to delete orphaned child records across more than just two levels of relationships.
Pipelines supports nesting many loops within each other, which you can take advantage of here to
delete child records up to 9 levels deep.

Overview

This section walks you through how to set up a cascading delete pipeline. Assume the following chain of
related tables:

Projects -> Tasks -> Documents.

Overview of example pipeline

The cascading delete pipeline will have the following steps:

• Step A: Trigger the pipeline when a record on the Projects table is deleted.
• Step B: Search the Tasks table for all child records related to the deleted project from Step A

Then, for each child task:
o Step C: Delete the task.

§ Step D: Search the Documents table for all child records related to the deleted
task from Step C. Then, for each child document:

• Step E: Delete the Document.

Guided Instructions

Pipeline Step A: Trigger when project is deleted

The goal of step A is to trigger the pipeline whenever a project record is deleted.

Setup:

1. Create a new pipeline and give it a name.
2. Open the Quick Base channel, then open the Records category.
3. Connect to your Quick Base account if you haven’t already done so (click here to learn how).
4. Drag the Record Deleted trigger onto the canvas.
5. Under Account, select your user token or connect a new one.
6. For this example, select the Projects table.

NOTE: Companies who only want to run the cascading delete for specific types of parent records
should enter a condition on the trigger here.

Step B: Search for related tasks

The goal of Step B is to search the Tasks table for child records related to the project deleted in Step A.

Setup:

1. Drag the Search Records action onto the canvas as Step B.
2. Select your user token again.
3. Select the Tasks table.
4. Under Fields, select Related Project. You’ll use this in the condition below.
5. Click Add Conditions.

6. Select the Related Project field.
7. Choose equals.
8. Drag the Record ID field so the condition reads: Related Project equals {{a.id}}

Step C: Delete the related tasks

The goal of Step C is to delete each task record found in Step B.

To set it up, drag the Delete Record action into the For each loop’s Do branch as Step C. The record
selected in the search in Step B is selected automatically.

Pipeline Step D: Search for related documents

The goal of Step D is to search the Documents table for child records related to each task deleted in Step
C.

Setup:

1. Drag the Search Records query below Step C within the Do branch.

2. Select your user token again.
3. Under Table¸ select Documents.
4. Under Fields, select Related Task.
5. Click Add conditions.
6. Select the Related Task field.
7. Choose equals.
8. Drag the Record ID field from Step B’s available fields so the condition reads: Related Task

equals {{b.id}}

Pipeline Step E: Delete the related documents

The goal of Step E is to delete each task record found in Step D.

To set it up, drag another Delete Record action into the loop below as your Step E. The record in the
search from Step D is selected automatically.

Testing your pipeline

Before testing your pipeline, make sure you’re not connecting to your production app. We strongly
recommend that you try a cascading delete pipeline out using a test application first.

To test your pipeline, first click the toggle next to Pipeline off to enable it. Next, switch to your app, and
navigate to each downstream child record. It’s helpful to open each of these records in separate tabs
before deleting the parent record, as it makes it easier to locate the records you’re deleting. Then, it can
be helpful to jot down the total # of records in each child table. This helps validate that your pipeline is
not deleting any records which should not be deleted. Once you’ve got that set up, you can go ahead
and delete the parent record.

If you switch back to Pipelines, the activity log in Pipelines will show you the progress of the pipeline,
and give you details about each step the pipeline is taking. Once the pipeline has finished running,
return to each tab for the child records and refresh the page to verify that those records have been
deleted. Finally, run a List All report for each child table you’re testing on to make sure the correct
number of records were deleted.

